国产三级在线观看一区二区,国产精品久久久久久c0m,色中文字幕亚洲人妻,国产日韩精品欧美一区喷水

產(chǎn)品分類

Product category

技術(shù)文章 / article 您的位置:網(wǎng)站首頁(yè) > 技術(shù)文章 > 大型公共建筑能耗監(jiān)控系統(tǒng)分析及介紹

大型公共建筑能耗監(jiān)控系統(tǒng)分析及介紹

發(fā)布時(shí)間: 2022-01-07  點(diǎn)擊次數(shù): 546次

安科瑞 陳聰 周潔

摘要:本文將針對(duì)大型公共建筑能耗監(jiān)控系統(tǒng)當(dāng)中安裝設(shè)備的特定分類、分項(xiàng)能耗裝置進(jìn)詳細(xì)分析,借助GPRS/Wi-Fi等無(wú)線傳輸技術(shù)手段,將大型公共建筑能耗檢測(cè)到的數(shù)據(jù)信息進(jìn)行動(dòng)態(tài)化分析,切實(shí)為我國(guó)節(jié)能減耗事業(yè)做出貢獻(xiàn),對(duì)大型公共建筑的能耗消耗情況進(jìn)行監(jiān)控,若發(fā)現(xiàn)了能耗過大的問題進(jìn)行優(yōu)化與管控.

??Abstract: in this paper, the specific classification and itemized energy consumption devices of the equipment installed in the energy consumption monitoring system of large public buildings will be analyzed in detail, and the data information detected by the energy consumption of large public buildings will be dynamically analyzed with the help of GPRS / Wi Fi and other wireless transmission technologies, so as to make a practical contribution to the cause of energy conservation and consumption reduction in China, Monitor the energy consumption of large public buildings, and effectively optimize and control if excessive energy consumption is found.

??關(guān)鍵詞:監(jiān)控系統(tǒng);能耗裝置;控制系統(tǒng)

??Key words: monitoring system; Energy consumption device; Control system

??0.背景 background

??我國(guó)建設(shè)部提出,經(jīng)過大數(shù)據(jù)統(tǒng)計(jì)分析,2020年底,全國(guó)建筑總面積已經(jīng)超過400億平方米,建筑能耗將達(dá)到十點(diǎn)九億噸標(biāo)準(zhǔn)煤,建筑在建造和使用過程中直接消耗的能源已占全社會(huì)總能耗的百分之三十左右。我國(guó)當(dāng)前大型公共建筑能耗在計(jì)量、傳輸、節(jié)能監(jiān)管層次存在一定問題,粗放式能耗管理在一定程度會(huì)造成大量的能耗浪費(fèi),大型公共建筑能耗監(jiān)測(cè)與節(jié)能管理已經(jīng)成為我國(guó)節(jié)能減耗工作的重心。雖然我國(guó)當(dāng)前已經(jīng)開展了信息化能好監(jiān)管工作,但是很多地方因?yàn)閿?shù)據(jù)采集自動(dòng)化程度較低,管理信息化程度較低,在數(shù)據(jù)上報(bào)的過程中,存在諸多問題,直接增加了能耗數(shù)據(jù)統(tǒng)計(jì)的難度。為了實(shí)現(xiàn)能耗數(shù)據(jù)信息采集,對(duì)能源消耗情況進(jìn)行動(dòng)態(tài)化管控,本文將針對(duì)大型公共建筑能耗監(jiān)控系統(tǒng)進(jìn)行詳細(xì)分析。

??China's Ministry of construction has proposed that through the statistical analysis of big data, by the end of 2020, the total construction area of the country has exceeded 40 billion square meters, and the building energy consumption will reach 1.09 billion tons of standard coal. The energy directly consumed by buildings in the process of construction and use has accounted for about 30% of the total energy consumption of the whole society. At present, there are some problems in the measurement, transmission and energy-saving supervision of energy consumption of large public buildings in China. Extensive energy consumption management will cause a lot of energy consumption waste to a certain extent. Energy consumption monitoring and energy-saving management of large public buildings have become the focus of energy conservation and consumption reduction in China. Although China has carried out the supervision of informatization, there are many problems of concealment in the process of data reporting, which directly increases the difficulty of energy consumption data statistics because of the low degree of automation of data collection and low degree of management informatization. In order to achieve accurate energy consumption data collection and effective dynamic control of energy consumption, this paper will analyze the energy consumption monitoring system of large public buildings in detail.

??1. 國(guó)內(nèi)外大型公共建筑能耗監(jiān)控系統(tǒng)發(fā)展 development of energy consumption monitoring system for large public buildings at home and abroad

??放眼國(guó)外來(lái)看,國(guó)外的智能樓宇技術(shù)已經(jīng)較為成熟,能耗數(shù)據(jù)信息監(jiān)測(cè)的智能化、自動(dòng)化水平也相對(duì)較高。針對(duì)發(fā)達(dá)國(guó)家來(lái)說,尤其是針對(duì)大型公共建筑的能耗監(jiān)控是相當(dāng)注重的,智能化能耗監(jiān)測(cè)設(shè)備也不斷完善,工程系統(tǒng)運(yùn)行穩(wěn)定。針對(duì)我國(guó)來(lái)說,智能樓宇技術(shù)雖然有所運(yùn)用,但是缺乏系統(tǒng)化的智能樓宇集成系統(tǒng),相關(guān)觀念、理念并未形成,與國(guó)外仍然存在較大差距。我國(guó)很多智能樓宇系統(tǒng)在運(yùn)行的過程中,缺乏相關(guān)系統(tǒng)整體運(yùn)行機(jī)制,會(huì)造成事半功倍問題,導(dǎo)致投資浪費(fèi),智能樓宇監(jiān)測(cè)系的實(shí)時(shí)性、可靠性、穩(wěn)定性都很難達(dá)到世界標(biāo)準(zhǔn)水平。國(guó)外當(dāng)前很多信息化技術(shù)企業(yè)都已經(jīng)針對(duì)大型公共建筑能耗監(jiān)控系統(tǒng),研發(fā)出了與其相匹配的系統(tǒng)性產(chǎn)品,美國(guó)霍尼韋爾、美國(guó)江森自控、德國(guó)西門子等公司,都進(jìn)行了能耗監(jiān)測(cè)系統(tǒng)產(chǎn)品研發(fā),促使國(guó)家大型公共建筑能耗監(jiān)控系統(tǒng)運(yùn)行更加穩(wěn)定。我國(guó)智能樓宇發(fā)展雖然存在不完善之處,但是在國(guó)家和企業(yè)的共同努力推動(dòng)之下,正在發(fā)展。我國(guó)上海元上能耗計(jì)量管理系統(tǒng)、研華地BEMS樓宇能源管理系統(tǒng),都展現(xiàn)出了自身*的價(jià)值,在我國(guó)大型公共建筑能耗監(jiān)控工作當(dāng)中運(yùn)用廣泛。

??Looking abroad, foreign intelligent building technology has been relatively mature, and the intelligent and automatic level of energy consumption data and information monitoring is also relatively high. For developed countries, especially for large public buildings, great attention is paid to energy consumption monitoring, intelligent energy consumption monitoring equipment is constantly improved, and the engineering system operates stably. For China, although intelligent building technology has been applied, it lacks systematic intelligent building integration system, relevant concepts and ideas have not been formed, and there is still a large gap with foreign countries. During the operation of many intelligent building systems in China, the lack of overall operation mechanism of relevant systems will lead to the problem of twice the result with half the effort, resulting in a waste of investment. The real-time, reliability and stability of intelligent building monitoring system are difficult to reach the world standard level. At present, many foreign information technology enterprises have developed matching systematic products for the energy consumption monitoring system of large public buildings. American Honeywell, American Johnson Controls, German Siemens and other companies have actively carried out the research and development of energy consumption monitoring system products, so as to promote the operation of energy consumption monitoring system of national large public buildings to be more stable and efficient. Although there are imperfections in the development of intelligent buildings in China, they are actively developing under the joint efforts of the state and enterprises. China's Shanghai Yuanshang energy consumption measurement and management system and Advantech BEMS building energy management system all show their unique value and are widely used in the energy consumption monitoring of large public buildings in China.

??2大型公共建筑能耗監(jiān)控?cái)?shù)據(jù)采集 Energy consumption monitoring data collection of large public buildings

??2.1能耗監(jiān)控?cái)?shù)據(jù)采集 energy consumption monitoring data collection

??大型公共建筑能耗數(shù)內(nèi)部數(shù)據(jù)系統(tǒng)繁雜,并且耗能的單位較多,為了做好大型公共建筑能耗監(jiān)控系統(tǒng)構(gòu)架,要對(duì)大型公共建筑能耗監(jiān)控?cái)?shù)據(jù)信息內(nèi)容進(jìn)行把控。結(jié)合我國(guó)頒布的《國(guó)家機(jī)關(guān)辦公建筑和大型公共建筑的具體內(nèi)容》當(dāng)中的要求來(lái)看,大型公共建筑能耗數(shù)據(jù)信息監(jiān)控內(nèi)容如圖1所示。

??The internal data system of energy consumption of large public buildings is complex, and there are many energy consuming units. In order to do a good job in the framework of energy consumption monitoring system of large public buildings, it is necessary to control the content of energy consumption monitoring data of large public buildings. According to the requirements in the specific contents of state organ office buildings and large public buildings issued by China, the monitoring content of energy consumption data information of large public buildings is shown in Figure 1.

圖1 能耗監(jiān)控?cái)?shù)據(jù)采集內(nèi)容

Figure 1 energy consumption monitoring data collection content

??2.2能耗監(jiān)控?cái)?shù)據(jù)處理 energy consumption monitoring data processing

??在開展大型公共建筑能耗監(jiān)測(cè)的過程中,可以借助一般性檢驗(yàn)計(jì)量裝置對(duì)能耗數(shù)據(jù)信息進(jìn)行檢測(cè),在明確能耗計(jì)量裝置峰值和谷值的基礎(chǔ)上,對(duì)各項(xiàng)數(shù)據(jù)進(jìn)行監(jiān)控。針對(duì)電能表當(dāng)中的功率情況進(jìn)行驗(yàn)證。為了保障數(shù)據(jù)信息采集,可以連續(xù)兩次進(jìn)行數(shù)據(jù)信息采集,對(duì)兩次數(shù)據(jù)信息采集誤差進(jìn)行把控,確保功率低于之路能耗設(shè)備功率的2倍。在確保數(shù)據(jù)信息采集的基礎(chǔ)上,還需要開展分項(xiàng)能耗數(shù)據(jù)計(jì)算,借助計(jì)量裝置開展檢測(cè),結(jié)合各項(xiàng)能耗指標(biāo)的計(jì)算方法,保障計(jì)量檢測(cè)水平。

??In the process of energy consumption monitoring of large public buildings, the energy consumption data information can be detected with the help of general inspection and metering devices, and various data can be monitored on the basis of clarifying the peak and valley values of energy consumption metering devices. Verify the power in the watt hour meter. In order to ensure the effectiveness of data and information collection, data and information collection can be carried out twice in a row, and the errors of the two data and information collection can be controlled to ensure that the power is less than twice the peak power of the energy consuming equipment on the road. On the basis of ensuring the accuracy of data information collection, it is also necessary to carry out sub item energy consumption data calculation, carry out detection with the help of metering devices, and ensure the measurement and detection level in combination with the calculation method of various energy consumption indicators.

??3大型公共建筑能耗監(jiān)控系統(tǒng)構(gòu)建框架construction framework of energy consumption monitoring system for large public buildings

??3.1系統(tǒng)框架 system framework

??本文當(dāng)中所研究的大型公共建筑能耗監(jiān)控系統(tǒng),緊密依照《國(guó)家機(jī)關(guān)辦公建筑和大型公共建筑能耗監(jiān)測(cè)系統(tǒng)——軟件開發(fā)指導(dǎo)說明書》當(dāng)中的要求開展設(shè)計(jì)的,切實(shí)滿足了我國(guó)規(guī)定的設(shè)計(jì)標(biāo)準(zhǔn)。大型公共建筑能耗監(jiān)控系統(tǒng)框架搭建模式如圖2所示,其主要目的便是獲取采集器前端數(shù)據(jù)信息。針對(duì)信息資源與數(shù)據(jù)層來(lái)說,便是在大型公共建筑當(dāng)中,實(shí)現(xiàn)能源消耗的數(shù)據(jù)信息獲取、傳輸,將采集到的能耗數(shù)據(jù)信息進(jìn)行分類。針對(duì)應(yīng)用層來(lái)說,涵蓋了數(shù)據(jù)及信息管理、分析展示、信息服務(wù)、后臺(tái)管理等四個(gè)層次內(nèi)容,不同層次當(dāng)中涵蓋了諸多字內(nèi)容。應(yīng)用層在大型公共建筑能耗監(jiān)控工作當(dāng)中的功能,便是用于能耗數(shù)據(jù)信息處理、展示、數(shù)據(jù)信息監(jiān)測(cè)。在應(yīng)用層當(dāng)中,可以將每個(gè)功能當(dāng)成獨(dú)立的系統(tǒng)模塊,在設(shè)計(jì)應(yīng)用層模塊時(shí),應(yīng)該保障每個(gè)處理模塊相對(duì)獨(dú)立,減少各個(gè)模塊之間的相互干擾,為后續(xù)能耗數(shù)據(jù)信息處理做鋪墊。針對(duì)表現(xiàn)層來(lái)說,便是對(duì)社會(huì)當(dāng)中不同角色可以結(jié)合自身的實(shí)際需求,對(duì)大型公共建筑能耗數(shù)據(jù)信息進(jìn)行分析。

??The energy consumption monitoring system of large-scale public buildings studied in this paper is designed in close accordance with the requirements of "energy consumption monitoring system of state organ office buildings and large-scale public buildings - software development guidance manual", which effectively meets the design standards specified in our country. The framework construction mode of energy consumption monitoring system for large public buildings is shown in Figure 2. Its main purpose is to obtain the front-end data information of the collector. For the information resources and data layer, it is to achieve the acquisition and transmission of first-hand energy consumption data information in large public buildings, and classify the collected energy consumption data information. For the application layer, it covers four levels: data and information management, analysis and display, information service and background management. Many words are covered in different levels. The function of the application layer in the energy consumption monitoring of large public buildings is used for energy consumption data information processing, display and data information monitoring. In the application layer, each function can be regarded as an independent system module. When designing the application layer module, each processing module should be relatively independent to reduce the mutual interference between each module and pave the way for the subsequent energy consumption data information processing. For the performance layer, it is to analyze the energy consumption data information of large-scale public buildings for different roles in the society in combination with their own actual needs.

圖2 大型公共建筑能耗監(jiān)控系統(tǒng)構(gòu)建框架圖

Figure 2 construction framework of energy consumption monitoring system for large public buildings

??3.2軟件構(gòu)架 software architecture

??大型公共建筑能耗監(jiān)控工作一般是借助軟件APP進(jìn)行操控管理的,在本文當(dāng)中所提及到的大型公共建筑能耗監(jiān)控系統(tǒng)軟件當(dāng)中,涵蓋了監(jiān)控終端、數(shù)據(jù)庫(kù)、數(shù)據(jù)管理系統(tǒng)、數(shù)據(jù)采集系統(tǒng)、防火墻、通信網(wǎng)絡(luò)、集中器、樓宇數(shù)據(jù)信息采集終端。智能樓宇系統(tǒng)所采集到的能耗數(shù)據(jù)信息,會(huì)傳輸?shù)綌?shù)據(jù)集中器當(dāng)中,將建筑物當(dāng)中電能表、水表、冷量表、氣表等能耗數(shù)據(jù)信息、運(yùn)行狀態(tài)進(jìn)行集中處理。集中器會(huì)將數(shù)據(jù)信息轉(zhuǎn)換成TCP/IP協(xié)議數(shù)據(jù)包等,通信網(wǎng)絡(luò)在防火墻的作用之下,促使數(shù)據(jù)信息處理模塊運(yùn)行,將有關(guān)的能耗數(shù)據(jù)信息傳輸?shù)綌?shù)據(jù)庫(kù)當(dāng)中。數(shù)據(jù)信息采集系統(tǒng)對(duì)集中器當(dāng)中的樓宇終端通信協(xié)議進(jìn)行管理,定時(shí)對(duì)數(shù)據(jù)通信存在的錯(cuò)誤進(jìn)行查錯(cuò)。針對(duì)數(shù)據(jù)丟失、工作異常等諸多內(nèi)容進(jìn)行相關(guān)數(shù)據(jù)處理,獲取數(shù)據(jù)庫(kù)當(dāng)中的相關(guān)數(shù)據(jù)信息,結(jié)合系統(tǒng)設(shè)置的能耗監(jiān)測(cè)指標(biāo),動(dòng)態(tài)化對(duì)建筑物當(dāng)中的能耗情況進(jìn)行監(jiān)控、測(cè)評(píng)、分析、存儲(chǔ)、展示。監(jiān)控終端一般會(huì)從數(shù)據(jù)庫(kù)當(dāng)中獲取相關(guān)數(shù)據(jù)并且得出評(píng)估結(jié)果,對(duì)其進(jìn)行綜合分析把控。監(jiān)控終端會(huì)結(jié)合數(shù)據(jù)庫(kù)、數(shù)據(jù)采集系統(tǒng)、通信網(wǎng)絡(luò)、防火墻、集中器等,對(duì)控制指令進(jìn)行分析,以便于對(duì)樓宇的采集終端數(shù)據(jù)信息狀態(tài)把控。

??The energy consumption monitoring of large public buildings is generally controlled and managed with the help of software app. The energy consumption monitoring system software of large public buildings mentioned in this paper covers monitoring terminal, database, data management system, data acquisition system, firewall, communication network, concentrator and building data information acquisition terminal. The energy consumption data information collected by the intelligent building system will be transmitted to the data concentrator for centralized processing of energy consumption data information and operation status such as electric energy meter, water meter, cooling meter and gas meter in the building. The concentrator will convert the data information into TCP / IP protocol packets. Under the action of firewall, the communication network will promote the operation of data information processing module and transmit the relevant energy consumption data information to the database. The data acquisition system manages the building terminal communication protocol in the concentrator and checks the errors in data communication regularly. Conduct relevant data processing for many contents such as data loss and abnormal work, effectively obtain relevant data information in the database, and dynamically monitor, evaluate, analyze, store and display the energy consumption in the building in combination with the energy consumption monitoring indicators set by the system. The monitoring terminal will generally obtain relevant data from the database and obtain the evaluation results for comprehensive analysis and control. The monitoring terminal will analyze the control instructions in combination with the database, data acquisition system, communication network, firewall, concentrator, etc., so as to control the data information status of the acquisition terminal of the building.

??4.大型公共建筑能耗監(jiān)控系統(tǒng)關(guān)鍵技術(shù)key technologies of energy consumption monitoring system for large public buildings.

??4.1多種能耗采集終端接入技術(shù)multiple energy consumption acquisition terminal access technologies

??在大型公共建筑能耗監(jiān)控系統(tǒng)當(dāng)中,關(guān)鍵的技術(shù)之一便是多種能耗采集終端接入技術(shù),以便于對(duì)公共建筑當(dāng)中的多種能耗進(jìn)行整合采集。不同品牌能耗監(jiān)控系統(tǒng)當(dāng)中的多種能耗采集終端接入技術(shù)存在不同差異,如何借助一個(gè)集中器進(jìn)行多種能耗采集連接至關(guān)重要。因?yàn)椴煌芎谋O(jiān)控系統(tǒng)存在私有協(xié)議,所以在選擇大型公共建筑能耗監(jiān)控系統(tǒng)時(shí),應(yīng)該對(duì)不同品牌的系統(tǒng)進(jìn)行分析,明確各個(gè)品牌的私有協(xié)議、種能耗采集連接方式,保障不同品牌開發(fā)的能耗監(jiān)控系統(tǒng)滿足大型公共建筑的實(shí)際使用需求,確保軟件系統(tǒng)可以順利接入到不同能耗采集終端當(dāng)中。

??In the energy consumption monitoring system of large public buildings, one of the key technologies is a variety of energy consumption acquisition terminal access technology, so as to integrate and collect a variety of energy consumption in public buildings. There are different access technologies of multiple energy consumption acquisition terminals in different brands of energy consumption monitoring systems. How to connect multiple energy consumption acquisition terminals with one concentrator is very important. Because there are private protocols for different energy consumption monitoring systems, when selecting the energy consumption monitoring system of large public buildings, we should analyze the systems of different brands, clarify the private protocols and energy consumption collection and connection modes of each brand, and ensure that the energy consumption monitoring system developed by different brands can meet the actual use needs of large public buildings, Ensure that the software system can be smoothly connected to different energy consumption acquisition terminals.

??4.2系統(tǒng)軟件開發(fā)技術(shù)system software development technology

??在實(shí)際開展大型公共建筑能耗監(jiān)控系統(tǒng)運(yùn)用時(shí),需要結(jié)合系統(tǒng)的整體框架和模塊分層特點(diǎn),引入本軟件平臺(tái)的開發(fā)技術(shù)。借助Java、JavaScrip等編程語(yǔ)言進(jìn)行程序編碼設(shè)計(jì),將數(shù)據(jù)存儲(chǔ)庫(kù)與云存儲(chǔ)技術(shù)相銜接,確保能耗數(shù)據(jù)信息存儲(chǔ)的安全性與巨型容量。在進(jìn)行數(shù)據(jù)信息傳輸通訊時(shí),應(yīng)該選擇穩(wěn)定的RS485數(shù)據(jù)通信標(biāo)準(zhǔn),保障存儲(chǔ)數(shù)據(jù)信息高質(zhì)量運(yùn)行。

??In the actual application of large-scale public building energy consumption monitoring system, it is necessary to introduce the development technology of this software platform in combination with the overall framework and module layered characteristics of the system. With the help of Java, javascrip and other programming languages for program coding design, the data repository is connected with cloud storage technology to ensure the security and huge capacity of energy consumption data information storage. During data information transmission and communication, a stable RS485 data communication standard should be selected to ensure the high-quality operation of stored data information.

??5.安科瑞能耗監(jiān)控系統(tǒng)介紹Introduction to ankerui energy consumption monitoring system

??Acrel-5000能耗在線監(jiān)測(cè)系統(tǒng)是用戶端能源管理分析系統(tǒng),在電能管理系統(tǒng)的基礎(chǔ)上增加了對(duì)水、氣、煤、油、熱(冷)量等集中采集與分析,通過對(duì)用戶端所有能耗進(jìn)行細(xì)分和統(tǒng)計(jì),以直觀的數(shù)據(jù)和圖表向管理人員或決策層展示各類能源的使用消耗情況,便于找出高耗能點(diǎn)或不合理的耗能習(xí)慣,節(jié)約能源,為用戶進(jìn)一步節(jié)能改造或設(shè)備升級(jí)提供準(zhǔn)確的數(shù)據(jù)支撐。用戶可按照國(guó)家有關(guān)規(guī)定實(shí)施能源審計(jì),分析現(xiàn)狀,查找問題,挖掘節(jié)能潛力,提出切實(shí)可行的節(jié)能措施,并向縣級(jí)以上人民政府管理節(jié)能工作的部門報(bào)送能源審計(jì)報(bào)告。

??Acrel-5000 energy consumption online monitoring system is a user-side energy management and analysis system. Based on the electric energy management system, it adds centralized collection and analysis of water, gas, coal, oil and heat (cooling) capacity. By subdividing and counting all energy consumption at the user-side, it shows the use and consumption of various energy to managers or decision-makers with intuitive data and charts, It is convenient to find out high energy consumption points or unreasonable energy consumption habits, effectively save energy, and provide accurate data support for users' further energy-saving transformation or equipment upgrading. Users can implement energy audit in accordance with relevant national regulations, analyze the current situation, find problems, tap energy-saving potential, put forward practical energy-saving measures, and submit energy audit reports to the administrative department of energy conservation of the people's government at or above the county level.

??5.1平臺(tái)結(jié)構(gòu) platform structure

??Acrel-5000能耗在線監(jiān)測(cè)系統(tǒng)以計(jì)算機(jī)、通訊設(shè)備、測(cè)控單元為基本工具,根據(jù)現(xiàn)場(chǎng)實(shí)際情況采用現(xiàn)場(chǎng)總線、光纖環(huán)網(wǎng)或無(wú)線通訊中的一種或多種結(jié)合的組網(wǎng)方式,為大型公共建筑的實(shí)時(shí)數(shù)據(jù)采集及遠(yuǎn)程管理與控制提供了基礎(chǔ)平臺(tái),它可以和檢測(cè)設(shè)備構(gòu)成任意復(fù)雜的監(jiān)控系統(tǒng)。開放性、網(wǎng)絡(luò)化、單元化、組態(tài)化的采用面向?qū)ο蟮姆謱印⒎旨?jí)、分布式智能結(jié)構(gòu)。建立如下層次結(jié)構(gòu):

??Acrel-5000 energy consumption online monitoring system takes computers, communication equipment and measurement and control units as basic tools, and adopts one or more combined networking modes of fieldbus, optical fiber ring network or wireless communication according to the actual situation of the site, providing a basic platform for real-time data acquisition, remote management and control of large public buildings, It can form any complex monitoring system with detection equipment. It is open, networked, unitized and configurable, and adopts the object-oriented hierarchical, hierarchical and distributed intelligent integrated structure. Establish the following hierarchy:

圖3 平臺(tái)結(jié)構(gòu)

Figure 3 platform structure

??5.2平臺(tái)功能platform functions

??(1)系統(tǒng)可按使用年份統(tǒng)計(jì)建筑物各分類能耗——電、水、氣、集中供熱、集中供冷以及其它能源消耗量,自動(dòng)折算成相應(yīng)的標(biāo)準(zhǔn)煤消耗量,從而反映建筑物當(dāng)年各分類能耗用能和綜合能耗。系統(tǒng)以餅圖形式展示建筑4大用電分項(xiàng)能耗的占比情況。系統(tǒng)以曲線圖形展現(xiàn)各類能耗的消耗的消耗趨勢(shì),便于業(yè)主方實(shí)時(shí)直觀掌握能源消耗情況。

??(2)系統(tǒng)可以根據(jù)分類能耗的支路名稱查詢用能情況,顯示當(dāng)日和當(dāng)月的用能峰值。顯示當(dāng)日用能、當(dāng)月用能、當(dāng)年用能與昨日同期用能、上月同期用能、上年同期用能的比較情況。以條形顯示過去48小時(shí)、31天、12個(gè)月、3年的能耗情況。右上角顯示過去15分鐘曲線(電表顯示功率曲線,流量表顯示流速曲線)。

??(3)系統(tǒng)依據(jù)建筑物能源消耗的分布情況進(jìn)行能耗計(jì)量點(diǎn)的選取和設(shè)置,使得能耗監(jiān)測(cè)系統(tǒng)可以覆蓋整個(gè)建筑物。系統(tǒng)使用者可通過相關(guān)界面調(diào)取該建筑物各能耗節(jié)點(diǎn)的能耗統(tǒng)計(jì)報(bào)表,減少用能的“跑、冒、滴、漏"和計(jì)量誤差。

??(4)系統(tǒng)依據(jù)住建部分類分項(xiàng)能耗數(shù)據(jù)采集導(dǎo)則,將建筑物耗電分為照明插座、空調(diào)、動(dòng)力和特殊用電進(jìn)行計(jì)量裝置選型和設(shè)置,并按用能區(qū)域或功能區(qū)域等劃分并進(jìn)行統(tǒng)計(jì),以報(bào)表和同、環(huán)比棒圖形式展現(xiàn)該區(qū)域的能源消耗。

??(5)系統(tǒng)可針對(duì)能源消耗量大的設(shè)備或區(qū)域進(jìn)行準(zhǔn)確定位,便于管理層制定節(jié)能績(jī)效考核制度,推動(dòng)節(jié)能降耗的執(zhí)行。為用能設(shè)備建立運(yùn)行記錄檔案,長(zhǎng)期跟蹤記錄設(shè)備運(yùn)行過程中的能效分析評(píng)估結(jié)果,結(jié)合設(shè)備維護(hù)保養(yǎng)記錄,為設(shè)備的運(yùn)行維護(hù)提供依據(jù)。

??(6)系統(tǒng)提供分級(jí)權(quán)限管理功能,對(duì)具備權(quán)限用戶提供開放的信息維護(hù)接口,用戶可自行對(duì)建筑和系統(tǒng)監(jiān)測(cè)范圍內(nèi)計(jì)量點(diǎn)的信息進(jìn)行增、刪、改和查詢,建筑物信息包括建筑類型、建設(shè)年代、建筑面積、建筑物人員數(shù)量等。系統(tǒng)還對(duì)無(wú)法自動(dòng)采集的計(jì)量信息提供手動(dòng)錄入功能,便于使用者掌握建筑物總體能耗情況。

??(1) The system can count the energy consumption of each classification of buildings - electricity, water, gas, central heating, central cooling and other energy consumption according to the service year, and automatically convert it into the corresponding standard coal consumption, so as to reflect the energy consumption and comprehensive energy consumption of each classification of buildings in the current year. The system displays the proportion of the energy consumption of the four major power sub items of the building in the form of pie chart. The system shows the consumption trend of various energy consumption with curves and graphs, which is convenient for the owner to grasp the energy consumption in real time and intuitively.

??(2) The system can query the energy consumption according to the branch name of classified energy consumption, and display the peak energy consumption of the current day and the current month. It shows the comparison of energy consumption of the current day, the current month, the current year and the same period of yesterday, the same period of last month and the same period of last year. The energy consumption in the past 48 hours, 31 days, 12 months and 3 years is displayed in a bar. The upper right corner shows the curve of the past 15 minutes (the electricity meter shows the power curve and the flow meter shows the flow rate curve).

??(3) The system selects and sets energy consumption measurement points according to the distribution of building energy consumption, so that the energy consumption monitoring system can cover the whole building. The system user can access the energy consumption statistical report of each energy consumption node of the building through the relevant interface to reduce the "running, emitting, dripping and leakage" and measurement error of energy consumption.

??(4) According to the guidelines for energy consumption data collection of sub items of residential buildings, the system divides the power consumption of buildings into lighting sockets, air conditioners, power and special power, selects and sets metering devices, divides and makes statistics according to energy consumption areas or functional areas, and displays the energy consumption of the area in the form of statements and comparison bar charts.

??(5) The system can accurately locate equipment or areas with large energy consumption, so as to facilitate the management to formulate energy-saving performance evaluation system and promote the effective implementation of energy conservation and consumption reduction. Establish operation record files for key energy consuming equipment, track and record the energy efficiency analysis and evaluation results during equipment operation for a long time, and provide basis for equipment operation and maintenance in combination with equipment maintenance records.

??(6) The system provides hierarchical authority management function and provides open information maintenance interface for users with authority. Users can add, delete, modify and query the information of buildings and measurement points within the monitoring range of the system. Building information includes building type, construction age, building area, number of building personnel, etc. The system also provides manual input function for measurement information that cannot be automatically collected, so that users can master the overall energy consumption of buildings.

??5.3數(shù)據(jù)上傳data upload

??安科瑞能耗在線監(jiān)測(cè)系統(tǒng)按照用能單位能耗在線監(jiān)測(cè)系統(tǒng)技術(shù)規(guī)范定義的系統(tǒng)平臺(tái)接口協(xié)議規(guī)范的要求,將用能企業(yè)的基礎(chǔ)信息、計(jì)量器具信息、用能數(shù)據(jù)及能效數(shù)據(jù)上傳至省級(jí)或國(guó)家平臺(tái),上傳數(shù)據(jù)經(jīng)過HTTPS協(xié)議加密傳輸。如果數(shù)據(jù)傳輸失敗或超時(shí)(網(wǎng)絡(luò)故障),將重發(fā)數(shù)據(jù),直至接收成功反饋消息。

??According to the requirements of the system platform interface protocol specification defined in the technical specification of the on-line monitoring system for energy consumption of key energy users, the on-line monitoring system for energy consumption of ankerui will upload the basic information, measuring instrument information, energy consumption data and energy efficiency data of energy consuming enterprises to the provincial or national platform, and the uploaded data will be encrypted and transmitted through HTTPS protocol. If the data transmission fails or times out (network failure), the data will be retransmitted until a successful feedback message is received.

??5.4能源計(jì)量表具選型selection of energy meters



??6結(jié)束語(yǔ) Conclusion

??總而言之,大型公共建筑能耗監(jiān)控系統(tǒng)自身具備一定優(yōu)勢(shì),在運(yùn)行的過程中可以滿足當(dāng)前社會(huì)綠色節(jié)能發(fā)展需求。為此,應(yīng)該結(jié)合我國(guó)當(dāng)前建筑事業(yè)發(fā)展需求,對(duì)大型公

??共建筑能耗監(jiān)控系統(tǒng)以及相關(guān)設(shè)備進(jìn)行創(chuàng)新,完善能耗監(jiān)控系統(tǒng)相關(guān)配套設(shè)施,動(dòng)態(tài)化及時(shí)對(duì)大型公共建筑的能耗進(jìn)行分析,及時(shí)發(fā)現(xiàn)造成能耗過多造成的問題,并有針對(duì)性的進(jìn)行改進(jìn),踐行我國(guó)及世界節(jié)能減耗發(fā)展需求。

??In a word, the energy consumption monitoring system of large public buildings has certain advantages, and can meet the current social green energy-saving development needs in the process of operation. Therefore, in combination with the current development needs of China's construction industry, we should actively innovate the energy consumption monitoring system and related equipment of large public buildings, improve the relevant supporting facilities of the energy consumption monitoring system, dynamically and timely analyze the energy consumption of large public buildings, timely find the problems caused by excessive energy consumption, and make targeted improvements, Truly implement the development needs of energy conservation and consumption reduction in China and the world.


聯(lián)


蘇公網(wǎng)安備 32028102001251號(hào)

连平县| 调兵山市| 铁岭市| 安阳县| 万安县| 理塘县| 正定县| 于都县| 潞西市| 黄大仙区| 庐江县| 广河县| 松阳县| 阿城市| 综艺| 江西省| 永修县| 措美县| 连山| 余庆县| 陆川县| 平乐县| 阜新市| 锡林郭勒盟| 禹城市| 新源县| 广南县| 建湖县| 沾益县| 宁南县| 叙永县| 老河口市| 阳山县| 安陆市| 天门市| 天津市| 响水县| 萨嘎县| 景德镇市| 新和县| 密山市|